- Home
- Standard 12
- Mathematics
If $A = \left[ {\begin{array}{*{20}{c}}
{ - 4}&{ - 1}\\
3&1
\end{array}} \right]$ , then the determinant of the matrix $\left( {{A^{2016}} - 2{A^{2015}} - {A^{2014}}} \right)$ is
$-175$
$2014$
$2016$
$-25$
Solution
$A = \left[ {\begin{array}{*{20}{c}}
{ – 4}&{ – 1}\\
3&1
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{ – 4}&{ – 1}\\
3&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ – 4}&{ – 1}\\
3&1
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
{13}&3\\
{ – 9}&{ – 2}
\end{array}} \right]$ and $\,\left| A \right| = 1$.
Now, ${A^{2016}} – 2{A^{2015}} – {A^{2014}}$
$ = {A^{2014}}\left( {{A^2} – 2A – I} \right)$
$\left| {{A^{2016}} – 2{A^{2015}} – {A^{2014}}} \right| = \left| {{A^{2014}}} \right|\left| {{A^2} – 2A – I} \right|$
$ = {\left| A \right|^{2014}}\left| {\begin{array}{*{20}{c}}
{20}&5\\
{ – 15}&{ – 5}
\end{array}} \right| = – 25$